Yield Modeling Calculations TI_CAL

Introduction
Yield modeling has been used for many years in the semiconductor industry.  Historically, the term “yield model” has referred to the mathematical representation of the effect of randomly distributed “defects” on the percentage of the integrated circuits (or dice) on a wafer that are “good.”.  “Good” means that they pass all parametric and functional tests that are specified for the product.  The mathematical representations are typically derived by starting with a statistical distribution function, such as the Poisson distribution or the Boze-Einstein statistics.  Then certain assumptions are made about the variations in the spatial distributions of the “killing” defects on the wafers and mathematical formulas are derived.  This will be discussed in more detail later in this chapter.

The use of these yield models that are based on statistical distributions is often successful for accurately calculating yields for products that have their yield limited only by random defects.  However, a complete and much more useful yield model will also account for “systematic” yield losses.  Systematic yield losses can result from process, design or test problems.  Dice that fail for systematic problems are not randomly distributed over the wafer area, but are often confined to given regions such as the outer periphery or the center.  Systematic failures do not depend on die area, as do failures that are due to random defects.

The total yield for a given product can be expressed as the product of the systematic yield and the random yield:


Y = Ys * Yr

Typically, the second term in this product is the only one that is “modeled,” in that the statistical model equation is used to calculate the yield limits due to various types of random defects that arise from different manufacturing processes steps or process equipment.  Thus, the statistical modeling “partitions” the random yield limits (or, conversely, yield losses) into components that are due to different types of defects.  However, the term “YS” is simply left as a single factor and not partitioned. YS is often “estimated,” or it can be calculated by performing “cluster analysis”
which will be discussed in this chapter.

A complete yield model would also partition the term Ys into its sub-components to create a pareto of systematic losses so yield improvement projects can be prioritized.  Two methods for doing this will be discussed in this chapter.

A compete yield model should therefore have the following characteristics:

1.  It must account of all sources of yield loss, both random and systematic.

2. The total “modeled” or calculated yield should agree well with the actual yield.

3. It should ideally give insight into possible causes of the yield loss.

4. It should be able to partition and quantify yield losses resulting from design, process, test and random defects.

Yield modeling is worthwhile and advantageous because:

1. It makes possible the use of existing process and test data to quantify and pareto-ize all sources of yield loss.

2. It can substantially improve the yield learning rate for new products.

3. It makes accurate yield forecasting possible which aids in planning.

4. It results in logical prioritizing of resources to work on yield enhancement projects with the highest payback.

5. It helps to set product specifications that match process capability.

This chapter will first cover cluster analysis for calculating Ys and Yr.  A brief review of the well-known random defect yield models will be given.  The use of one of these models (the negative binomial model) for calculating individual defect yield limits will be explained.  Two methods for calculating systematic yield limits will be discussed.  The calculation of test yield limits will also be briefly presented.

Cluster Analysis
Cluster analysis or “window analysis”, introduced by Seeds [1,2], was used extensively by Stapper at IBM[3].  This analysis is performed using actual wafer probe bin maps for finished wafers.  The dice are partitioned into groups or “blocks“ of 1, 2, 3, 4 (2x2), 6 (3x2), 9 (3x3), etc. A simple example with groupings of 1x1, 1x2, 2x2, and 2x3 is shown in Figure 1. The percent yield is then calculated for each grouping, with the stipulation that the block is only considered to be a yielding block if all dice within the block passed wafer probe testing.  (E.g. in the 2x2 block, all four dice must have yielded at wafer probe to count the block as good).  For example, if there are 600 possible candidates on the wafer, and 480 tested good, the yield of the 1x1 block is simply 480/600 = 80%  For the 1x2 blocks, the total possible candidates would be 300, and if 216 of these had both dice pass wafer probe, the yield is 216/300 = 72%.  The 2x2 blocks, for example, have 150 total candidates, and if 90 of the blocks contain all four dice that tested good, the yield is 90/150 = 60%.  This simulates what the yield would be for similar products of the same technology with 2x, 3x, 4x, 6x and 9x the die area of the actual product being analyzed.

Because of statistical variations in yield across the wafer surface and from wafer-to-wafer, the above block yield calculations are performed on a relatively large number (>500 if possible) of wafers and the yields for each block size are averaged.  When the averages have been computed, the values are plotted on a graph of yield vs. block size, as shown in Figure 2.  

A “best-fit” curve fitting routine is then applied to the points on the graph, using one of the yield model equations described later. For illustration, the negative binomial model will be used:


[image: image1.wmf]a

a

÷

ø

ö

ç

è

æ

AD

+

1

1

*

Y

=

Y

S





(1)

Where:

Ys (systematic yield limit), D(density of random fatal defects in units of defects per die) and 

(cluster factor) are the parameters whose values are optimized for the best fit of the equation to the block yield data points.

The analysis thus provides “best” values for Ys, D and 

(cluster factor) for a statistically significant sample of wafers for a given product.  Ys corresponds to the intercept of the best fit curve to the y-axis.  Alpha is the measure of the tendency of the defects to “cluster” or to depart from total randomness.  D is the average number of fatal or “killing” defects per die.  To calculate the killing defect density in terms of defects per unit area, D is divided by the die area of the product in question.  The random defect yield limit (YR) can then be calculated by one of two methods:

1) By using the equation
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where D0 is the defect density in terms of defects per unit area

2) By using:
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where Y is the average yield of the 1x1 block for the wafers used in the analysis.

If a statistically significant sample size was used for the analysis, and if the negative binomial model provides a good fit, the two methods should agree very closely.

The use of cluster analysis provides two major benefits.  The first is that it quantifies the systematic and random yield limits so priority can be placed on further analysis and yield improvement efforts which will result in the greatest payback.  The second is that it provides and excellent cross-check for the results of the yield modeling which partitions the random and systematic yield limits into their sub-components. After the partitioning is completed, if all sources of yield loss are accounted for, the product of all random defect yield limits should equal the Yr obtained from the cluster analysis.  Likewise, the product of all independent systematic yield limits should equal the YS from the cluster analysis.

Random Defect Yield Models
If it is assumed that a wafer has a given number of fatal defects that are spread randomly over the wafer area, then the average number per chip would be AD0, where A is the chip area and D0 is the total number divided by the total wafer area.  If the defects are entirely random in their spatial distribution, the probability of finding a given number, k, of defects on any single die is given by the Poisson distribution:
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Where:
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The yield is then defined as the probability of a die having zero defects (n=0), so:
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This is the Poisson yield model.  In most cases, this model is found to predict yields that are lower than actual yields for a given product with a specified D0.  This is because the defect density varies by region of the wafer and from wafer to wafer.  This results in a higher probability of a given die having multiple killing defects than would be predicted by the random model, thus leaving other dice without any killing defects which, in turn, means higher yields than predicted.

To take into account the variation in the defect density, the yield model is modified to include a defect density distribution:
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Several of the defect yield models used by wafer manufacturers result from solving this equation with various assumptions for the form of F(D).

Of course, if F(D) is a delta function at D0, the Poisson model results.

If a Gaussian distribution is approximated by a triangular distribution as shown in Figure 3, the Murphy Model is obtained: 
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An exponential distribution:
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results in the Seeds model:
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Another common model is the Bose-Einstein model, which attempts to take into account the number of mask steps and assumes an average defect density of D0 per mask level.  This model takes the following form:
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Where n is the number of mask levels.  The main weakness with this model is that it assumes the same defect density for all levels.  This is usually not the case.  For example, the killing defect density is usually much higher for metal layers than for front end layers.  The Price Model is a special case of the Bose-Einstein model which sets n = 1.

The last model that will be considered is the negative binomial model.  This has been discussed extensively by C. H. Stapper, formerly of IBM.  (See references.)  This can be derived by setting F(D) in equation 6 to the gamma distribution.  The resulting random yield model is:
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Where 

 is the “cluster” factor.  This factor has physical significance and is related to the amount of clustering or non-randomess of the killing defects.  A small value of 

  indicates a higher degree of clustering and a larger value indicates a lower degree of clustering.  A small value of 

means that the probability of having multiple killing defects on the same die or on adjacent dice is greater than for a large 

.  Small 

also means that the variation in D0 is greater across the wafer area.  As 

approaches infinity, it can be shown that equation 11 reduces to equation 5.  The determination of the value of 

was explained in the previous section.  

A comparison of the random yield limit predictions for the various models presented here is shown in Figure 4.  It is seen that the Seeds model is the most pessimistic and the Bose-Einstein model is the most optimistic.  For these curves, a D0 of 0.25/cm2 has been assumed, and for the Bose-Einstien model, n=8 was assumed (so D0 = 0.25/8 = .03125/cm2/layer).

Figure 5 depicts Yr curves for the negative binomial model for various values of 

, again for D0 = 0.25/cm2.

It is seen from this graph that higher values of 

 result in a more pessimistic yield prediction.

The Genereral Yield Model

A general yield model can be expressed as a product of all independent yield limits 
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Where:
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It is important to note that these yield limits must be independent of each other.  This means that the various yield detractors do not affect each other or correlate with each other.  If they do, double counting of yield problems ensues resulting in total yield calculations that are lower than actual yield.  If some of the yield limits are interdependent, all but one of each interdependent group must be eliminated, or they must be proportioned as explained in reference 5.

In subsequent sections, it will be explained how to calculate each of the various types of yield limits.

Random Defect Yield Limits

The most accurate method for calculating yield limits resulting from random defects is to implement a thorough in-line inspection program using such tools as the KLA23xx as discussed in Chapter….  There are two other requirements for obtaining accurate results:

1 Defect wafer map to wafer probe map overlay capability must exist, so it can be accurately determined upon which die each defect falls.

2  It is highly desirable to have a computer program which calculates the “kill ratio” or “killer probability” for each type of defect at each critical layer.

It is also important to have a consistent defect classification scheme, preferably ADC (automatic defect classification). This method works best for products in full production because fairly large numbers of wafers must be inspected (( 100 wafers)  to obtain accurate killer probabilities.  

A few important points need to be made about calculating killer probabilities.  The simplest and most accurate method is to use only dice that have only a single defect in the calculations.  This is certainly reasonable for FABs with relatively low defect densities and relatively small dice.  If defect densities are high or the dice are very large, the probability of finding dice with only one defect becomes small and the sample size required for accurate results becomes prohibitively large.

For the case of small defect densities and relatively small die size, the computer program scans through all inspected layers and finds dice that have only one defect of one type. The killer probability is easily calculated as :
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Where:
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Calculating the killer probabilities by hand requires reviewing many bin-overlay maps. This review consists of counting the defects of a particular type on both good dice and failed dice and calculating the probability that the presence of a given type of defect will cause a device to fail.  A good estimate of the killer probability can be made without reviewing all other layers to see if each die contains multiple defects.  This is done by correcting for the “background” random yield as follows:

1. Exclude the outer ring of dice from the analysis because there are too many possible causes for low yield there.

2. Exclude any regions or wafers where regional yield losses occur because of systematic problems.

3. Calculate the killer probability as above, as if the defect under consideration were the only one on the die.

4. Calculate the average background yield in the area under consideration for the wafers included in the analysis.

5. Calculate the adjusted killer probability from the formula:


[image: image23.wmf])

1

)(

1

(

)

(

B

k

k

k

Y

P

P

A

P

i

i

-

-

-

=

(14)

Where:
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For example, if a background yield of 90% is assumed (= 0.90) and the unadjusted kill probability is15%, the adjusted killer probability is:
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If the unadjusted kill probability is higher (e.g., 90%), then the adjusted value differs only slightly from the unadjusted value:
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With the method of equation 14, it is not necessary to check for other types of defects from various layers on the die.  Therefore, this method is useful in cases where defect densities are high, and/or the dice are large making it difficult to find dice that contain only one defect.

After the killer probabilities have been calculated for all types of defects, the yield limits for each type of defect can be calculated by using the following equation:
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Where:
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Where: 
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It is important to note that Ni is the “normalized” defect density.  This means that if fewer than 100% of the defects are classified (or reviewed), the total number of defects of type i is projected onto the total population by the equation:
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Where:
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It also must be noted that equation 15 only works for unclustered (or random) defects.

Systematic Yield Limits – Method 1

The first method for calculating individual systematic yield limits is called Limited Yield Analysis.  This method only gives accurate results for products in high volume production.  This is because there are many variables that affect yield, and this method uses wafer averages and determines the average effect of electrical parameters (e.g. threshold voltages or transistor gains) on the yield.  The actual number of wafers required to calculate a yield limit in the range of 0.97 (3% loss) and with a standard deviation of about 8% in the yield of the product has been found empirically to be about 2000 wafers.  For higher yield limits (less loss than 3%), or for higher standard deviation, the number must be even greater.

The method works for either process or design-related systematic problems.

The yield limits are calculated from the formula:
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Where;
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The equation is the same for 
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, or for process systematic yield limits.

A detailed explanation of how this integral is evaluated is in order.  Using specific examples is the best way to do this.

Figure 6 shows a histogram (or frequency distribution) for a particular electrical parameter (poly sheet resistance in this example)  for a product manufactured using a BiCMOS process.  The specification limits for this parameter are 800-1200 ohms/square.  The data results from measuring poly sheet on five sites per wafer on a  large number of wafers.  The histogram represents the average values of the five sites for each wafer.  To use this distribution in equation 17, it must be normalized so that the total area of the histogram is 1.0.  This is done by simply dividing the number of wafers in each range (or bar) by the total number of wafers in the sample.  

The key element in the analysis is now the “grouping” of the wafers into three groups with equal numbers of wafers in each group.  The first group consists of all wafers with average poly sheet in the lower third of the distribution.  The second group consists of wafers with medium values of poly sheet.  The third group includes all wafers with high values of poly sheet.  Again, the groups are not formed by equal ranges of poly sheet, but by equal numbers of wafers in each group.  After the wafers are grouped in this manner, the average of the electrical parameter (poly sheet) is computed for each group.  Also, the average of the wafer probe yield is computed for each group. This results in three pairs of points which can then be plotted as shown in Figure 7.  

A function (in this case, a parabola) can then be fitted to these three points.  The function must then be normalized so that the highest yield of the three points is equal to 1.00.  The normalized values for the other two points are then computed by dividing the average number of good dice for the two groups by the average number of good dice for the highest yielding group.  For example, if the highest average yield is 400 DPW, and the other two averages are 360 and 370 DPW, the corresponding normalized values would be 360/400 = 0.90 and 370/400 = 0.925.  After the curve has been normalized in this manner, the resulting function becomes Y(PK) in equation 17.  Equation 17 can then be evaluated (numerically because of the irregularity of the frequency distribution) to compute the corresponding yield limit.  In this special example, the yield limit was calculated to be 0.936, which translates into a yield loss of 6.4% because of the probe yield sensitivity to poly sheet.

It is important to understand why the electrical test data and the yield data are grouped and averaged as explained above.  There are hundreds of variables that might affect wafer probe yields, including both random and systematic variables.  As long as these variables are independent of the variable in question (poly sheet in the example) there is no reason to expect that the other variables should group themselves in any particular way within the three groups partitioned according to the value of poly sheet.  In other words, there is no reason to expect that wafers with low poly sheet should have more defects of a particular type than wafers with high poly sheet, for example.  Likewise, there should be no reason to expect that wafers with low poly sheet would have a different value of contact resistance (for example) compared to wafers with high poly sheet.  Threfore, if the sample size is large enough, all of the other (independent) variables should average out in a similar manner for each of the three groups of wafers, leaving only the effect on yield of the variable being analyzed.  Essentially, the averaging is a method for looking at the variation in yield due to one parameter, where all other effects, being equal for the three groups, have been “removed” from the analysis.  It is simply cleaner than trying to look at and interpret a scatter plot of the raw data.

If two electrical parameters correlate with each other (e.g. NMOS effective channel length (Leff) and NMOS drive current), then when the wafers are grouped according to ranges of one variable, the other parameter will also show a systematic grouping.  For example, the wafers with low Leff would also tend to have higher drive current.  If the limited yield analysis shows that one parameter affects yield, the other correlating parameter will also affect yield.  If the correlation is very good, the yeild limits should be very nearly equal for the two parameters.  In generating the yield limit pareto, only one of the two yield limits would be used.  The one to be used must be chosen by engineering judgment, based on a knowledge of the product in question.

Regarding the use of just three groupings of the data, two justificaitns are in order.  Three points are the minimum number required to determine the shape of the curve, whether it is linear or has a peak and drops off on both sides (as in Figure 7). Normally, a more complex relationship (e.g. two peaks) would not be expected.  The second reason for using three points is because this maximizes the number of wafers in each group (compared to using more than three points) so the averaging described above is most effective for detecting significant yield differences among the groups.  In other words, a 3% yield difference, for example, would be more significant with three groups than with more groups because more data points are include in each group.

In general, if the yield varies by value of an electrical parameter such as transistor parameters, resistance, or capacitor values while the said paramterss are within their specification limits, a design issue is indicated.  If the yield varies by electrical test values of leakage current between metal or poly lines, or current leakage between nodes of transistors (e.g. emitter-to-base leakage, etc.), a process problem is indicated.

Systematic Yield Limits – Method 2
In this section, a powerful method for determining systematic yield limits called product sensitivity analysis (PSA) is presented.  This has three advantages over the previous method.  The first is that significantly fewer wafers are required for the analysis.  This is because the analysis uses site data (by x-y location on the wafers) as opposed to wafer averages.  The second advantage is that the analysis can be done earlier in the development cycle (after only ~100 wafers have been processed and tested).  This makes it possible to detect systematic process and design problems early and fix them before the product is shipped to customers.  The third advantage is that PSA gives insight into possible causes of the yield loss.  This will be explained in more detail as the analysis is described.

PSA determines how parameters measured at wafer probe (e.g. Icc currents, offset voltages, cutoff frequencies, etc.) vary with electrical parameters (e.g. Vtn, Leff, Hfe, poly sheet, etc.).  This method does not work for functional pass/fail test performed at wafer probe.

In preparation for the analysis, a wafer probe test yield loss pareto is generated as shown in the example of Figure 8.  The tests for which actual parametric values are measured, and which cause the greatest yield loss are then chosen for the analysis.  The analysis is can then be performed for these parametric tests vs. all electrical parameters.  The example used here will be for the wafer probe test highest on the pareto (test 2304).  Figure 9 shows the actual distribution of this parameter.  It can be seen that the distribution is far off-center between the specification limits.  It is required that all parameters measured at wafer probe be recorded and stored by x-y coordinates on the wafer.  Also, electrical parameters must be measured either in scribe-line test modules or in drop-in test modules at several sites on the wafers (preferably ( 4 per wafer).

The analysis then proceeds as follows for each wafer probe parameter.  The wafer probe and electrical parameters are screened and data points outside the “normal” or “typical” distributions are excluded.  This may be done, for example, using:
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Where:
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and

LSL = low screen limit

USL = high screen limit

Next, the values of the probe parameter for the product dice immediately surrounding each electrical test site are averaged and paired with the corresponding values for all electrical parameters of the sites.  This results in a table similar to the abbreviated hypothetical  example shown in Table 1.  The first column identifies lot, wafer number, and site.  The next column is the average value for the wafer probe parameter for dice surrounding each electrical test site. The following columns contain the values for the electrical parameters.

For each electrical parameter, the data are then grouped into three ranges, each with equal numbers of sites, according to the value of the electrical parameter.  For the three groups, the average of the electrical parameter is computed, as is the average of the wafer probe parameter.  This gives three points to plot on a graph, just as in the case of the limited yield analysis.  A “best fit” line is then calculated and plotted on the graph. 

 The upper and lower specification limits for both the electrical parameter and the wafer probe parameter must also be imported into the computer program.  These are plotted as vertical lines for the electrical parameter (independent variable) and horizontal lines for the wafer probe parameter (dependent variable).

The standard deviation (
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) is computed for the wafer probe parameter for each of the three groups.  The ( 3
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 bars are plotted for each of the three points on the graph, and the ( 3
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 lines are plotted above and below the best-fit line.  These are forced to be parallel to the best-fit line.  The result is a graph like the example shown in Figure 10.  This is for probe test 2304, whose distribution is shown in Figure 9.  Note that the frequency distributions for the electrical parameter are also plotted on the graph.

If the slope of the best-fit line is large relative to the wafer probe parameter spec limits, a sensitivity is indicated.  Of course, a statistical test (such as t-test) should be performed to confirm that the differences in the wafer probe parameter between the three groups are statistically significant at the 95% level.  Also, the three averages for the wafer probe parameter should monotonically increase or decrease with increasing value of the electrical parameter.  If these conditions are met, the sensitivity is of interest and should be further studied.

If the +3
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 line intersects the upper spec limit of the wafer probe parameter while the electrical parameter is still within its spec limits, yield loss can result for sites with electrical parameter values between this intersection and the specification limit.  Yield loss can similarly occur if the -3
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 line intersects the lower specification limit of the wafer probe parameter at a point between the electrical specification limits.  In Figure 10, yield loss would start to occur near sites with values of poly 2 sheet resistance (P2MSRES) below about 188 ohms/square.  This value is well within the specification limits of 160 to 240 ohms/square.

For electrical parameters such as Vtn, Hfe, poly sheet,  etc. where specification limits were set in advance and agreed upon by the designers, if the line intersect as described above, any yield loss is due to design sensitivities. Of course, if the electrical parameter is tightly controlled in a narrow range where the +3
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lines are within the probe specification limits, no yield loss would occur even though there is a design sensitivity.

The method for calculating yield limits is illustrated in Figure 11.  Here, the best-fit line intersects the upper spec limit of the wafer probe parameter within the actual distribution range of the electrical parameter.  A vertical line is extended to the horizontal axis.  This line cuts off a certain fraction of the distribution.  The yield loss is then simply the ratio of the area of the distribution to the left of the line (in this example) to the total area of the distribution.  The yield limit is then:
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Where:
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Design yield limit due to electrical parameter k
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The area under the distribution to the left of the vertical line
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This analysis is repeated for all electrical parameters and for each of the wafer probe parameters high on the yield loss pareto.   All of the graphs with no intersection of the ( 3
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 lines with the wafer probe specification limits can then be eliminated.  Also, graphs that do show potential yield loss because of sensitivities to electrical parameters that correlate with other electrical parameters are screened  as described for limited yield analysis.  This leaves only one yield limit for each independent sensitivity.  The systematic yield limits are then summarized in a pareto.

Test Yield Limits
Test yield loss can result from such problems as mis-calibration of test hardware, poor contact of probe tips, electrical noise, etc. The calculation of two types of yield limits will be described here. 

The first type is typically systematic in nature and results from differences between various testers, probe cards, interface boards, etc.

A “set-up” is defined as a unique combination of tester, probe card, interface board, and any other component that might be changed periodically from one tester to another.

The number of wafers that should be run using each set-up in order to obtain statistically valid results depends on the variability in yield and the magnitude of the yield difference to be detected.  One formula that can be used if the yield distribution is reasonably close to “normal” is :
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Where:
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a

Z

 
“Z” factor for the probability of “(” of making an “(” type error
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b

Z

 
“Z” factor for the probability of “(” of making an “(” type error
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s

 
Standard deviation in the yield
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d

 

The yield difference to be detected

The z factors can be looked up in a standard table for the normal distribution.  For example, if it is desired to have less than a 10% probability of making an error of either type (projecting a yield difference when there is none, or projecting no yield difference when there is one), z is read from the table as 1.64.  This assumes that the yield difference can be either positive or negative.  If the 
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for the yield is 8% and it is desired to detect a yield deference of 1%, N can be calculated as:  
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As an example, it is assumed that three different set-ups have been used to test 3,000 wafers with the following results:


Set-up

_N__

% Yield


   1

1200

   87%


   2

 800

   85%


   3

1000

   88%

It is assumed that set-up “3” gives the optimum yield for this product.  The test set-up yield limit is then:
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The general formula can be expressed as:
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Where:
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i

N

 
The number of wafers tested with set-up i
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i

Y

 
Mean yield of wafers tested with set-up i


[image: image74.wmf]=

N

 
Total number of wafers tested
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OPT

Y

 
“Optimum” yield or mean yield of the best set-up

Another type of yield loss can happen because of some product dice having one or more parameters measured at wafer probe that are close to the upper or lower specification limits.  In this case, electrical noise or slight variations in tester voltage or current input levels can cause the dice to fail when they are really good.  If the dice were tested repeatedly, they would sometimes pass and sometimes fail.  These dice are sometimes called “twinkling dice”.  If correlation wafers are tested repeatedly to ensure proper test set-ups, the probe results can be used to calculate yield limits due to tester non-repeatibilty or “twinkling dice”.  The formula is: 
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Where:
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i

n

 
The number of twinkling dice that fails i times
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i

T

 
The number of times these dice failed
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G

N

 
The gross number of dice in the (correlation) wafer
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t

N

 
The number of times the wafer was tested

For a simple example, it is assumed that NG = 600 and that the correlation wafer was tested four times (N = 4).  Furthermore, the numbers of dice that failed various numbers of times are assumed to be:



_Ti__

__ni___


   

   1

   27


   

   2

     9


   

   3

     1

Therefore:
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Because of space constraints, the calculation of a few types of yield limits have not been described in this chapter.  For example, special yield test structures that are run early in the technology development cycle can be used to determine defect densities at various layers.  This information can be used, along with critical area analysis, as soon as the first product layout is complete,  to calculate defect yield limits for the new product.  Also, yield limits can be calculated for clustered defects, but these must be treated separately from the purely random defects.

Summary

A complete mathematical yield model has been discussed which accounts for yield limits resulting from design, process, test, and random defect problems.  The yield model is expressed as the product of all of the independent yield limits.  Table 2 gives an actual example of all of the calculated yield limits for a product that was in production at the TI Santa Cruz, CA wafer FAB several years ago.  The grand limit is shown and compared with the actual yield for a given month.  It can be seen that the numbers agree very well.  This means that nearly all of the sources of yield loss were accounted for.

Equations and methods have been described for calculating yield limits for most of the types of yield loss that occur in the four main categories.  The effectiveness of the methodology has been shown by the example in Table 2.
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